My presentation on gauge conditions for perturbations in GR and their use in blackhole stability proofs, given at the Midwest Relativity Meeting 2012 held at the University of Chicago.
Gauge Conditions & Stability in GR
Gauge Conditions
&Black Hole Stability
Previously on...
Hollands and Wald [arXiv:1201.0463]
Dynamic stability \(\Leftrightarrow\) positive canonical energy for perturbations- Gaussian null coordinates
- boundary conditions
- fix gauge near horizon
ADM
Gauge freedom
\( G_\alpha = \begin{pmatrix} D_aD_b\alpha - h_{ab}\triangle\alpha - R_{ab}\alpha \\ 2D_{(a}\alpha_{b)} \end{pmatrix} \)
infinitesimal
Perturbations
\(X = ( p_{ab},q_{ab})\)
Inner Product
\( \langle \tilde X,X \rangle = \int\limits_\Sigma \tilde p^{ab}p_{ab} + \tilde q^{ab}q_{ab}\)Symplectic Product
\( \langle \tilde X,SX \rangle = \int\limits_\Sigma \tilde p^{ab}q_{ab} - \tilde q^{ab}p_{ab}\)Constraints
\( 0 = \langle X, S~G_\alpha \rangle \quad \forall \alpha \in C_0^\infty \)
\( 0 = R^{ab}q_{ab} + \triangle q \) Hamiltonian
\( 0 = D^b p_{ab} \) diffeomorphism
\(G_\alpha\) satisfies constraints!
Gauge Conditions
\( 0 = \langle X, G_\alpha \rangle \quad \forall \alpha \in C_0^\infty \)
\( 0 = R^{ab}p_{ab} + \triangle p \)
\( 0 = D^b q_{ab} \)
perturbed area of \(B\) \(= 0\)
perturbed expansion of \(B\) \(= 0\)
Boundary terms
Evolution
Kinetic Energy
\[ \mathscr{K} \doteq \langle p_{ab},Kp_{ab} \rangle = \int\limits_\Sigma 2N\left[ (p_{ab})^2 - \tfrac{1}{d-1}p^2 \right] \]
TT-decomposition
Choose: \(\triangle\xi = -\tfrac{1}{d-1}p\) with \(\xi|_B = 0\)
\[ \chi_{ab} \doteq p_{ab} - D_aD_b \xi + R_{ab}\xi + h_{ab}\triangle \xi \]
- \( \chi = 0\) traceless
- constraint : \( D^b\chi_{ab} = 0 \) transverse
Potential Energy
\[\begin{split} \mathscr{U} & \doteq \langle q_{ab},U q_{ab} \rangle \\ & = \int\limits_\Sigma N\left[ \tfrac{1}{2}(D_cq_{ab})^2 - \tfrac{3}{2}(D_aq)^2 \right.\\ & \qquad \left. + q^{ab}R_{cabd}q^{cd} \right] -\int\limits_B \kappa (q_{ar})^2 \end{split}\]Take Home
- uniquely fix gauge: \( 0 = \langle X, G_\alpha \rangle\)
- evolution: \(\dot q = Kp\) ; \( \dot p = -Uq \)
- \( \mathscr{K} \geq 0\)
- \( \mathscr{U} \geq 0\)? ; stationary case?
0 Responses: